Upcoming Talks

Ist logo

Proof of a Conjecture of Carbery

Date: Thursday, May 17, 2018 16:00 - 18:00
Speaker: Elliott Lieb (Princeton University)
Location: Big Seminar room Ground floor / Office Bldg West (I21.EG.101)
Series: Mathematics and CS Seminar
Host: Robert Seiringer
Lab building west seminar room


Consider the L^p triangle inequality for functions, |f+g| \leq |f|+|g|, which is saturated when f=g, but which is poor when f and g have disjoint support. Carbery proposed a slightly more complicated inequality to take into account the orthogonality, or lack of it, ofthe two functions. With Eric Carlen and Rupert Frank it has now been proved. In fact, a much stronger version has been proved. Actually, Carbery was mainly interested in (non-commutative) matrices and traces instead of functions and integrals, so there is still much to be done.

A. Carbery, 'Almost-orthogonality in the Schatten-von Neumann classes',J. Operator Theory 62 (2009), 151158.

Qr image
Download ICS Download invitation
Back to eventlist