We consider the asymmetric simple exclusion process (ASEP) on \(\mathbb{Z} \) with an initial data such that in the large time particle density \(r \) a discontinuity at the origin is created, where the value of \(r \) jumps from zero to one, but \(r \) (resp. \(1-r \)) is strictly positive to the left (resp. right) of the origin. We consider the position of a particle \(x_{M} \) macroscopically located at the discontinuity, and show that its limit law has a cutoff at \(t^{1/2} \) scaling, \(t \) the observation time. Inside the discontinuity region, we show that a discrete product limit law arises, which bounds from above the limiting fluctuations of \(x_{M} \) in the general ASEP, and equals them in the totally ASEP. Sending \(M \) to infinity, we recover from the discrete product structure the GOE*GOE fluctuations previously observed in TASEP.