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Given a Riemann surface $\Sigma$ denote by $$M_n(\mathbb{F}) := Hom_{\xi}( \pi_1(\Sigma),
GL_n(\mathbb{F}))/GL_n(\mathbb{F})$$ the $\xi$-twisted character variety for $\xi \in \mathbb{F}$ a $n$-
th root of unity.  An anti-holomorphic involution $\tau$ on $\Sigma$ induces an involution on
$M_n(\mathbb{F})$ such that the fixed point variety $M_n^{\tau}(\mathbb{F})$ can be identified with the
character variety of real representations" for the orbifold fundamental group $\pi_1(\Sigma, \tau)$. When
$\mathbb{F} = \mathbb{C}$, $M_n(\mathbb{C})$ is a complex symplectic manifold and
$M_n^{\tau}(\mathbb{C})$ embeds as a complex Lagrangian submanifold (or ABA-brane). By counting
points of $M_n(\mathbb{F}_q)$ for finite fields $\mathbb{F}_q$, Hausel and Rodriguez-Villegas
determined the E-polynomial of $M_n(\mathbb{C})$ (a specialization of the mixed Hodge polynomial). I
will show how similar methods can be used to calculate the E-polynomial of $M_n^\tau(\mathbb{F}_q)$
using the representation theory of $GL_n(\mathbb{F}_q)$.  We express our formula as a generating
function identity involving the plethystic logarithm of a product of sums over Young diagrams. The Pieri's
formula for multiplying Schur polynomials arises in an interesting way. This is joint work with Michael
Lennox Wong.
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