Mathematics and CS Seminar

E-polynomials of character varieties for real curves

Tom Baird (Memorial University of Newfoundland)

Host: Tamas Hausel

Given a Riemann surface Σ denote by $M_n(\mathbb{F}) := \text{Hom}_\xi(\pi_1(\Sigma), GL_n(\mathbb{F}))/GL_n(\mathbb{F})$ the ξ-twisted character variety for $\xi \in \mathbb{F}$ a n-th root of unity. An anti-holomorphic involution τ on Σ induces an involution on $M_n(\mathbb{F})$ such that the fixed point variety $M_n^\tau(\mathbb{F})$ can be identified with the character variety of real representations for the orbifold fundamental group $\pi_1(\Sigma, \tau)$. When $\mathbb{F} = \mathbb{C}$, $M_n(\mathbb{C})$ is a complex symplectic manifold and $M_n^\tau(\mathbb{C})$ embeds as a complex Lagrangian submanifold (or ABA-brane). By counting points of $M_n(\mathbb{F}_q)$ for finite fields \mathbb{F}_q, Hausel and Rodriguez-Villegas determined the E-polynomial of $M_n(\mathbb{C})$ (a specialization of the mixed Hodge polynomial). I will show how similar methods can be used to calculate the E-polynomial of $M_n^\tau(\mathbb{F}_q)$ using the representation theory of $GL_n(\mathbb{F}_q)$. We express our formula as a generating function identity involving the plethystic logarithm of a product of sums over Young diagrams. The Pieri's formula for multiplying Schur polynomials arises in an interesting way. This is joint work with Michael Lennox Wong.

Thursday, October 1, 2020 02:00pm - 03:30pm
IST Austria Campus https://mathseminars.org/seminar/AGNTISTA

This invitation is valid as a ticket for the IST Shuttle from and to Heiligenstadt Station. Please find a schedule of the IST Shuttle on our webpage: https://ist.ac.at/en/campus/how-to-get-here/ The IST Shuttle bus is marked IST Shuttle (#142) and has the Institute Logo printed on the side.